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By a generalization of the Hopfield model, we construct a microscopic Lagrangian describing a
dielectric medium with dispersion and dissipation. This facilitates a well-defined and unambiguous
ab initio treatment of quantum electrodynamics in such media, even in time-dependent backgrounds. As an
example, we calculate the number of photons created by switching on and off dissipation in dependence on
the temporal switching function. This effect may be stronger than quantum radiation produced by
variations of the refractive indexΔnðtÞ since the latter are typically very small and yield photon numbers of
order ðΔnÞ2. As another difference, we find that the partner particles of the created medium photons are not
other medium photons but excitations of the environment field causing the dissipation (which is switched
on and off).
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I. INTRODUCTION

One of the most striking consequences of quantum field
theory is the nontrivial nature of the vacuum or ground
state. Even in this lowest-energy state, fields do not vanish
identically, but are permanently fluctuating. These quantum
vacuum fluctuations cause many well-known effects such
as spontaneous emission [1], the Casimir effect [2], or the
Lamb shift [3,4]. Another fascinating consequence is the
phenomenon of quantum radiation, where these fluctua-
tions are converted into real particles by suitable external
conditions, which would have no effect on the classical
vacuum (with all fields vanishing identically). Examples
include Hawking radiation [5,6], the dynamical Casimir
effect [7], and cosmological particle creation [8,9] but also
time (or even space-time) dependent variations of the
refractive index in dielectric media (or waveguides), where
the latter can display interesting analogies [10–12] to the
former ones, see also Refs. [13–27], [28–31], and [32–34],
respectively.
In a notably simplified approach, aspects of quantum

radiation can be studied by neglecting medium properties
such as dispersion and dissipation. Going beyond this
simple picture, there has been considerable work regarding
the effects of dispersion, see, e.g., [21–25,27,35]. However,
in the vast majority of publications, quantum radiation has
been considered in absence of dissipation, with a few

exceptions including [36–38]. One of the main reasons lies
in the intrinsic difficulty of treating dissipation correctly,
especially regarding quantum fluctuations under nontrivial
external conditions.
There are basically two main approaches for adding

dissipation to the well-established theory of nondissipative
dielectrics discussed in, e.g., [39–41]. In a top-down
approach, one starts with the phenomenological properties
of a given medium such as the complex dielectric permit-
tivity εðωÞ and then constructs the corresponding quantum
field operators by demanding consistency conditions, see,
e.g., [42–45]. The alternative bottom-up approach, on the
other hand, is based on microscopic models, which
allow for deriving the associated medium properties such
as εðωÞ. For simple cases, such as stationary and homo-
geneous media, it is possible to show the equivalence of
these two approaches via the Huttner-Barnett formalism
[46–48] based on an exact Fano diagonalization [49–51].
However, extending this formalism to more general cases
such as temporally and possibly even spatiotemporally
varying media is quite involved. Thus, even though the
phenomenological approach has the obvious advantage to
account for media with very general εðωÞ, it has the
drawback of potential ambiguities, especially in time-
dependent scenarios.
A related issue is the explicit calculation of observables

(e.g., the number of created photons) which typically
requires certain approximations. In order to describe dis-
sipative media, several microscopic approaches employ a*s.lang@hzdr.de
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Markov-type approximation (e.g., in Weisskopf-Wigner
theory) that neglects the memory of the environment,
see also [52]. Especially in time-dependent scenarios, the
justification and applicability of such an approximation
must be scrutinized in order to avoid inconsistencies.
In the following, we propose and study an explicit

microscopic model (bottom-up approach) for a 1þ 1
dimensional dielectric medium including dispersion and
dissipation, which does not require any Markov-type
approximations and has well defined in and out states.
The goal is an ab inito treatment of quantum radiation
without ambiguities and additional assumptions. Using this
approach, we study quantum radiation emerging from time-
dependent variations (switching on and off) in the coupling
between a medium and its environment, see also [53–56].

II. THE MODEL

We consider the following Lagrangian

L ¼ LA þ LΨ þ LAΨ þ LΦ þ LΨΦ; ð1Þ

where LA describes the electromagnetic vector potential
Aðt; xÞ in 1þ 1 dimensions (ℏ ¼ c ¼ 1)

LA ¼ 1

2

Z
dxf½∂tAðt; xÞ�2 − ½∂xAðt; xÞ�2g: ð2Þ

As usual in the Hopfield model, the polarization of the
medium is included by adding harmonic oscillators Ψðt; xÞ
with resonance frequency Ω > 0 to all points x of the
dielectric

LΨ ¼ 1

2

Z
dxf½∂tΨðt; xÞ�2 − Ω2Ψ2ðt; xÞg; ð3Þ

and coupling them to the electric field E ¼ −∂tA via

LAΨ ¼ −g
Z

dxΨðt; xÞ∂tAðt; xÞ; ð4Þ

with the coupling strength g.
The above terms LA þ LΨ þ LAΨ represent the usual

Hopfield model [24,39–41]. In order to include dissipation,
we introduce an additional field Φðt; x; ξÞ which can
exchange energy with the medium and propagates in a
perpendicular (ξ) direction

LΦ ¼ 1

2

Z
dxdξf½∂tΦðt; x; ξÞ�2 − ½∂ξΦðt; x; ξÞ�2g: ð5Þ

This field is coupled to the mediumΨðt; xÞ in the same way
as the electromagnetic field Aðt; xÞ, but with a coupling
strength G

LΨΦ ¼ −G
Z

dxΨðt; xÞ∂tΦðt; x; ξ ¼ 0Þ; ð6Þ

where we assume the medium to be located along the ξ ¼ 0
line. Possible interpretations of the environment field will
be discussed in Sec. VI A below.
In principle, this model holds for media with general

time-dependent parameters Ω, g and G, and can even be
generalized to fully space-time dependent settings, see also
Sec. VI B below.

III. EQUATIONS OF MOTION

In order to show that the above model (1) does indeed
feature the dynamics expected for a dissipative medium, let
us study the associated Euler-Lagrange equations. For the
electromagnetic field Aðt; xÞ, we obtain the same form as in
the usual Hopfield model

½∂2
t − ∂2

x�Aðt; xÞ ¼ ∂t½gΨðt; xÞ�; ð7Þ
but the medium field Ψðt; xÞ acquires an additional term

½∂2
t þΩ2�Ψðt; xÞ ¼ −g∂tAðt; xÞ −G∂tΦðt; x; 0Þ: ð8Þ

Finally, the environment field Φðt; x; ξÞ evolves accord-
ing to

½∂2
t − ∂2

ξ �Φðt; x; ξÞ ¼ ∂t½GΨðt; xÞ�δðξÞ; ð9Þ

where we have written all equations is such a way that they
equally hold for time-dependent ΩðtÞ, gðtÞ and GðtÞ.

A. Dispersion relation

Considering constant parameters (Ω, g and G) for the
moment, we may solve Eq. (9) via the retarded Green’s
function and arrive at

Φðt; x; ξÞ ¼ Φ0ðt; x; ξÞ þ
G
2
Ψðt − jξj; xÞ; ð10Þ

where Φ0ðt; x; ξÞ denotes the homogeneous solution of
Eq. (9), i.e., of ½∂2

t − ∂2
ξ �Φ0ðt; x; ξÞ ¼ 0. Since we have

used the retarded Green’s function (with the retarded time
argument t − jξj), this solution Φ0ðt; x; ξÞ describes the
environment field originating from I− (i.e., t → −∞ and
ξ → �∞) before interacting with the medium at ξ ¼ 0.
Inserting this solution back into Eq. (8), we get a driven

and damped oscillator at each position x
�
∂2
t þ

G2

2
∂t þΩ2

�
Ψðt; xÞ ¼ −G∂tΦ0ðt; x; ξ ¼ 0Þ

− g∂tAðt; xÞ; ð11Þ
where we can read off the damping factor Γ ¼ G2=4 of the
medium. By finally combining Eqs. (7) and (11), we find
(for constant Ω, g and G)
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��
∂2
t þ

G2

2
∂t þΩ2

�
ð∂2

t − ∂2
xÞ þ g2∂2

t

�
Aðt; xÞ

¼ −gG∂2
tΦ0ðt; x; ξ ¼ 0Þ: ð12Þ

The environment field on the right-hand side constitutes
the classical counterpart of the quantum noise term
required by the fluctuation-dissipation theorem while the
differential operator on the left-hand side yields the
dispersion relation

k2 ¼ ω2

�
1þ g2

Ω2 − iωG2=2 − ω2

�
¼ ω2εðωÞ; ð13Þ

which turns into a standard textbook expression (see, e.g.,
Sec. 11.3 of Ref. [57]) for dissipative dielectric media after
some minor rescaling of system parameters.
From the corresponding dielectric permittivity εðωÞ

illustrated in Fig. 1, we obtain the effective refractive
index n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2=Ω2

p
for small photon frequencies ω.

The imaginary part

ℑ½εðωÞ� ¼ 2Γ
n2 − 1

Ω2
ωþOðω2Þ ð14Þ

is closely linked to the damping exponent of solutions

Aðt; xÞ ∝ exp fiω
ffiffiffiffiffiffiffiffiffiffi
εðωÞ

p
x − iωtg; ð15Þ

which oscillate at frequencies ω > 0 where

ℑf
ffiffiffiffiffiffiffiffiffiffi
εðωÞ

p
g ¼ Γ

n2 − 1

nΩ2
ωþOðω2Þ: ð16Þ

Note that this quantity is related to but not identical with the
intrinsic damping Γ ¼ G2=4 of the oscillators Ψðt; xÞ.

IV. QUANTIZATION

As an advantage of our microscopic model (1), we may
now derive the corresponding quantum field operators Â,

Ψ̂, and Φ̂ in an unambiguous manner which consistently
takes the quantum fluctuations of all fields into account.
The origin of those fluctuations depends on the time
dependence of the coupling parameters gðtÞ and GðtÞ.
If both adopt finite values for a sufficiently long time,
extending far into the past, all quantum fluctuations can
ultimately be traced back to vacuum fluctuations of the
environment field Φ̂0 (see also [58]). However, if the Φ̂
field is initially decoupled from the remaining ones Â and Ψ̂
(the case we shall consider later), the Â and Ψ̂ fields will
bring in their own initial quantum fluctuations. Then, if
GðtÞ is switched on, all these fluctuations become mixed—
which gives rise to particle creation.

A. Environment field Φ0

Let us first consider the impact of the environment field.
In the general case of time-dependent parameters ΩðtÞ, gðtÞ
and GðtÞ, the equations of motion (7), (8), and (9) can be
decoupled analogous to the scenario of a static medium.
For example, the solution of Eq. (9) for time-dependent
GðtÞ has the same form as in Eq. (10) but with the modified
argument Gðt − jξjÞ. Inserting this solution back into
Eqs. (7) and (8), we may decouple these two second-order
equations into one fourth-order equation for the medium
field�
½∂2

t − ∂2
x�
1

g

�
∂2
t þ

1

2
G∂tGþ Ω2

�
þ ∂2

t g

�
Ψ̂ðt; xÞ

¼ −½∂2
t − ∂2

x�
G
g
∂tΦ̂0ðt; x; ξ ¼ 0Þ; ð17Þ

where we have omitted the arguments t of all system
parameters Ω, g, and G to enhance readability. After
solving Eq. (17), the corresponding electromagnetic field
Âðt; xÞ can finally be obtained via integration of Eq. (8).
If the initial Gðt → −∞Þ is nonvanishing, the homo-

geneous solutions of the above equation decay with time
and thus only the inhomogeneous solution stemming from
the source term on the right-hand side survives. In other
words, the initial quantum fluctuations of the fields Â and Ψ̂
are transferred (i.e., lost) to the environment and all the
remaining quantum fluctuations stem from the primordial
fluctuations of Φ̂0.
As explained above, this homogeneous solution

Φ̂0ðt; x; ξÞ constitutes a free scalar field in two spatial
dimensions, albeit with a nonisotropic dispersion relation
ω ¼ jkξj as it propagates in ξ direction only. Thus, it can be
quantized in the usual manner

Φ̂0ðt; x; ξÞ ¼
Z

dkdκ
2π

b̂keiðkxþκξ−jκjtÞffiffiffiffiffiffiffiffi
2jκjp þ H:c:; ð18Þ

with standard bosonic creation and annihilation operators
b̂†k and b̂k satisfying ½b̂k; b̂†k0 � ¼ δ2ðk − k0Þ, where we denote

FIG. 1. Real and imaginary parts of the dielectric permittivity
εðωÞ for exemplary parameters g ¼ 3Ω=2 andG ¼ ffiffiffiffi

Ω
p

=2, i.e., in
the underdamped regime of G2 < 4Ω.

QUANTUM RADIATION IN DIELECTRIC MEDIA WITH … PHYS. REV. D 102, 125020 (2020)

125020-3



k ¼ ðkx; kξÞ ¼ ðk; κÞ. These operators correspond to the
initial vacuum state j0iin of the environment field (incom-
ing from I−) with b̂kj0iin ¼ 0.

B. Decoupled case

As pointed out at the beginning of this section, the
situation is different for an initially nondissipative (albeit
still dispersive) medium. In this case, the coupled A,
Ψ system is decoupled from the Φ field and thus both start
to evolve from their independent vacuum states. For
G ¼ 0 and nonvanishing, constant Ω and g, we have the
usual Hopfield Hamiltonian ĤH, which can be diagonalized
[40] via

∶ĤH∶ ¼
X
�

Z
dkω�ðkÞâ†�ðkÞâ�ðkÞ; ð19Þ

with â†�ðkÞ and â�ðkÞ denoting the creation and annihila-
tion operators of the two bands

ω�ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2 þ Ω2 þ g2Þ � ρðkÞ

2

r
; ð20Þ

where we have used the abbreviations

ρðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2g2 þ σ2ðkÞ

q
ð21Þ

and

σðkÞ ¼ k2 − g2 −Ω2: ð22Þ

As illustrated in Fig. 2, the lower band ω−ðkÞ behaves as
jkj=n for small k, while the upper band ωþðkÞ tends to a
constant value

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ g2

p
¼ nΩ. For large k, on the other

hand, the lower band ω−ðkÞ approaches the medium
resonance frequency Ω while the upper band reaches the
vacuum light cone jkj. In contrast to the lower band
accounting for massless photons at small wave numbers

k, the upper band resembles the dispersion relation for a
relativistic massive field. Note also the band gap of width
ðn − 1ÞΩ between the two bands.

V. PARTICLE CREATION

Based on the model established above, one may study
various quantum effects in and out of equilibrium. Since
providing an ab initio treatment of time-dependent dis-
sipative media is one of the major benefits our approach
offers compared to existing models, we will henceforth
focus on nonequilibrium phenomena. In principle, one
could consider time-dependent parameters ΩðtÞ, gðtÞ, or
GðtÞ or a combination of them. In order to illustrate the
novel features of our model (in comparison to nondissi-
pative Hopfield dielectrics), let us consider a scenario
where we switch on and off dissipation by a time-depen-
dent GðtÞ with Gðt → �∞Þ ¼ 0 while the other two
parameters Ω and g are kept constant.
Even for constant Ω and g, solving the decoupled field

equation (17) is quite involved for general profiles GðtÞ,
which makes it hard to reach progress analytically. A major
difficulty arises from the interplay of excitation and
dissipation; i.e., particles are already damped while they
are created. In order to focus on the phenomenon of particle
creation (and to separate it from the competing damping
effect), we assume that the couplingGðtÞ is switched on for
a sufficiently short time and to a maximum value which is
not too large, such that the damping during this switching
time can be neglected in a first approximation.

A. Perturbation theory

Formally, the approximation described above can be
implemented via perturbation theory based on a power
expansion in G. As one option, this can be formulated
in the framework of time-dependent perturbation theory
with the perturbation Hamiltonian ĤΨΦ stemming from the
Lagrangian LΨΦ given in Eq. (6), while the remaining
contributions LA þ LΨ þ LAΨ þ LΦ correspond to the
undisturbed Ĥ0 problem. As another option, we may
approximate the equations of motion for the field operators
by omitting all terms of order OðG2Þ. Decoupling the
original problems (7), (8), and (9) for time-dependent GðtÞ
in this way yields the simplified expression

½ð∂2
t þ Ω2Þð∂2

t − ∂2
xÞ þ g2∂2

t �Âðt; xÞ
¼ −g∂tGðtÞ∂tΦ̂0ðt; x; ξ ¼ 0Þ þOðG2Þ; ð23Þ

see also Eq. (12). After inserting the inhomogeneity (18),
comparing the initial Âinðt; xÞ and final Âoutðt; xÞ solutions
(both expressed in terms of the creation and annihilation
operators introduced in Sec. IV B) yields the Bogoliubov
transformation (to first order in G)

FIG. 2. Plot of the dispersion relation ω�ðkÞ in Eq. (20) with
exemplary parameters g=Ω ¼ 5=6.
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âout� ðkÞ ¼ âin�ðkÞ þ
Z

dκðα�kκb̂kκ þ β�kκb̂
†
−kκÞ: ð24Þ

The Bogoliubov coefficients α�kκ and β�kκ connecting the
initial âin�ðkÞ and final âout� ðkÞ annihilation operators (i.e.,
before and after switching on an off dissipation) with the
initial environment operators b̂kκ and b̂

†
kκ are proportional to

the Fourier transform G̃ðωÞ of the switching function GðtÞ,
evaluated at ω�ðkÞ − jκj and ω�ðkÞ þ jκj, respectively, plus
OðG2Þ corrections.
To lowest order in G, the number (density) of particles

created per unit length is given by

hn̂out� ðkÞiin ¼
Z

dκjβ�kκj2 ¼
ρðkÞ ∓ σðkÞ
8ρðkÞω�ðkÞ

Z
dκjκj

× jG̃ðω�ðkÞ þ jκjÞj2: ð25Þ

Assuming that the characteristic rate of change in the
switching function GðtÞ is much slower than the medium
frequency Ω, the number hn̂outþ ðkÞiin of particles in the
upper band ωþðkÞ is exponentially suppressed due to
ωþðkÞ ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ g2

p
. For the same reason, we may approxi-

mate the lower band according to ω−ðkÞ ≈ jkj=n [59].

B. Lorentzian profile

A particularly simple expression can be obtained for a
switching function in the form of a Lorentz pulse

GðtÞ ¼ G0

τ2

τ2 þ t2
; ð26Þ

with the characteristic switching time τ > 0. In this
case, the Fourier transform is just an exponential function
G̃ðωÞ ¼ G0τ

ffiffiffiffiffiffiffiffi
π=2

p
expf−τjωjg and the total number of

created particles N per length l reads

N
l
≈

1

32

g2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ g2

p G2
0

Ω3τ2
¼ Γ0

ðΩτÞ2
n2 − 1

8n
: ð27Þ

Since we have assumed a slow switching function, i.e.,
Ωτ ≫ 1, a significant number N of photons can only be
created by switching the dissipation in a region of suffi-
ciently large optical path length nl. Even though the above
result was obtained for the specific switching function (26),
the qualitative scaling behavior should be the same for
other (reasonable) profiles GðtÞ.
Let us compare the above number to the well-known case

of changing the refractive index nðtÞ by a small amount
Δn ≪ 1 in absence of dissipation, see, e.g., [20,33–35]. For
a Lorentzian perturbation ΔnðtÞ analogous to Eq. (26), the
number of particles N per unit length l reads

N
l
¼ π

16

ðΔnÞ2
nτ

: ð28Þ

In nonlinear dielectric media, refractive index perturbations
ΔnðtÞ of order Oð10−3Þ can be generated by strong laser
pulses and the Kerr effect [18,60]. Slightly stronger
perturbations ΔnðtÞ of order Oð10−2Þ have been reported
for tunable metamaterials [31]. However, since the number
of created particlesN=l is of second order inΔn, switching
dissipation could be more effective.

C. Partner particles

As is well known, changing the refractive index nðtÞ
creates photons in pairs with opposite momenta �k. The
relation between photons and their partners can be observed
in the two-point correlation function hÂðt; xÞÂðt; x0Þi, for
example. For times t long after the switch, one obtains
distinctive signatures at distances jx − x0j ¼ 2t=nþOðτÞ,
see also [34,61].
In contrast, the partners of photons created by switching

on and off dissipation are not other medium photons, but
excitations of the environment field Φ. This can already be
inferred from the (lowest-order) Bogoliubov transformation
(24), see [62]. As another signature, we find pairs of peaks
in the correlation function hΦ̂ðt; x; ξÞÂðt; x0Þi at distances
jξj ¼ tþOðτÞ and jx − x0j ¼ t=nþOðτÞ but not (to first
order) in the correlation hÂðt; xÞÂðt; x0Þi.
Apart from this, there is no first-order imprint in the two-

point function hΦ̂ðt; x; ξÞΦ̂ðt; x0; ξ0Þi, which indicates again
that all excitations created in theΦ field have partners in the
medium. Therefore, we obtain no pairs of correlated Φ
excitations (to lowest order), in contrast to another mecha-
nism of quantum radiation studied in Ref. [53], where both
partners eventually escape to a surrounding field.

D. Sudden switching

Previous works including Refs. [53,56] have simplified
their analysis by considering scenarios in which the light-
matter coupling is suddenly switched off. This simplifica-
tion is not necessary in our approach, which allows us to
take into account the dependence on the temporal switching
function GðtÞ. For a steplike profile GðtÞ ¼ G0Θð−tÞ, our
perturbative result (25) yields divergent particle numbers
hn̂out� ðkÞiin for all modes k. This singularity is caused by an
ultraviolet (UV) divergence of the κ integration and stems
from the idealized interaction term LΨΦ in our model
Lagrangian (1), which has no UV cutoff and thus couples
each mode k of the medium to arbitrarily large wave
numbers κ of the environment Φ. By analytically solving
Eq. (17) in case of GðtÞ ¼ G0Θð−tÞ with constant Ω and g,
we have found this result to apply even beyond the scope of
perturbation theory.
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VI. CONCLUSIONS

We generalized the well-known Hopfield model involv-
ing the electromagnetic field A and the medium polarization
field Ψ by adding an environment field Φ. In this way, we
arrived at a microscopic Lagrangian corresponding to a
(1þ 1)-dimensional dielectricmedium including dispersion
and dissipation. The model is constructed in such a way that
it allows for the derivation of quantum electrodynamics in
such media without ambiguities and without resorting to
additional assumptions such as the Markov approximation.
Consequently, it naturally accounts for the dynamics in
media with time-dependent backgrounds, which is a major
benefit in comparison to existing models for dissipative
dielectrics.
As an exemplary configuration with nonconstant param-

eters, we considered switching on and off dissipation and
derived the number of created photons in dependence on
the temporal switching function GðtÞ and the switching
time τ. To further illustrate the photon yield calculated
above, let us compare two scenarios: in scenario I, we
consider a Lorentzian pulse GðtÞ of height G0 and width τ
within a time-dependent waveguide of length l. In scenario
II, we envision a static waveguide of the same length lwith
constant couplingG0 (see Sec. III A). Now, if l (for a given
G0) was sufficiently large that typical photons of frequen-
cies ω ¼ Oð1=τÞ would be damped away according to
Eqs. (15) and (16) before fully traversing the static wave-
guide in scenario II, the corresponding scenario I (with the
same G0) would yield a particle number of order unity. As
we switch dissipation just briefly to the strength G0, most
particles created by the modulation GðtÞ are not dissipated
but should, in principle, be observable after dissipation has
been switched off again. Thus, the photon yield of a short
pulse GðtÞ could exceed the quantum radiation generated
by a time-dependent refractive index nðtÞ, because varia-
tions ΔnðtÞ are typically small and yield photon numbers
quadratic in Δn.
Since quantum radiation typically creates particles in

pairs (i.e., a squeezed state), another interesting question
concerns the partner particles of the produced photons. In
contrast to the case of a time-dependent refractive index
nðtÞ and other scenarios (see, e.g., [53–55]), we find that
the partner particles of photons created by switching on and
off dissipation are (primarily) excitations of the environ-
ment field Φ instead of other photons.

A. Discussion

Since our approach does not involve any coarse graining
or averaging procedures, the environment field Φ provides
a channel for dissipation but retains its full memory of the
unitary system dynamics. However, after the initial inter-
action between Φ and the system (A and Ψ), this memory
propagates to ξ → �∞ and thus never acts back onto the A
and Ψ fields located at ξ ¼ 0. This is an important
simplification since it facilitates analytic solutions without

invoking Markov-type approximations. The price to pay is
a specific assumption regarding the coupling to our
environment field Φðt; x; ξÞ.
Let us discuss possible physical interpretations of this

field and the corresponding coordinate ξ. Adopting a
minimalistic point of view, one could argue that this setup
just serves as a model for generating the expected (dis-
persive and dissipative) system dynamics. More specifi-
cally, the harmonic oscillators of the usual Hopfield model
turn into damped harmonic oscillators. Going beyond such
a minimalistic standpoint, one could actually design wave-
guides or metamaterials in such a way that they effectively
reproduce our model. In this case, the environment coor-
dinate ξ could constitute a real spatial coordinate, such as
ξ ¼ y. Such an implementation would also allow for
measuring the correlations hΦ̂ðt; x; ξÞÂðt; x0Þi between
the system and its environment after switching dissipation,
cf. Sec. V C. If one considers more general dispersive and
dissipative media, the perpendicular coordinate ξ could
represent an intrinsic coordinate labeling some internal
degrees of freedom which absorb the energy dissipated
from the medium (for example phonons).
Depending on the concrete physical realization of the Φ

field, there are several possible mechanisms for switching
on and off dissipation. In the waveguide or metamaterial
setup, one could imagine switching procedures in analogy
to the experiments [30,31] devoted to the dynamical
Casimir effect. In other scenarios, changing atomic or
molecular resonance frequencies by external means (e.g.,
strong laser fields) can open or close specific decay
channels by tuning them in or out of resonance.

B. Outlook

Even though we focused on a (1þ 1)-dimensional
medium supporting the fields Aðt; xÞ and Ψðt; xÞ in this
work, it is straightforward to generalize our model to
higher dimensions involving the fields Aðt; x; y; zÞ and
Ψðt; x; y; zÞ. In this case, the environment field would be
effectively (4þ 1)-dimensional Φðt; x; y; z; ξÞ. Of course,
this would render it difficult to interpret the environment
coordinate ξ as a real spatial coordinate, but ξ could still
describe an internal coordinate.
Apart from temporal variations, one could also model

inhomogeneous media by introducing spatial dependences
of the parameters ΩðrÞ, gðrÞ, and GðrÞ. This would
facilitate changes of the frequency dependence of the
effective dielectric permittivity εðω; rÞ as well as essentially
independent variations of its real and imaginary parts (at a
fixed frequency ω), see also [63–65].
As another generalization, one could include more than a

single resonance by coupling the electromagnetic field A to
several fields ΨI with resonance frequencies ΩI and
coupling strengths gI . To generate dissipation, all (or a
subset) of them would then be coupled to separate
environment fields ΦI , but one could also study the effects
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of a joint environment Φ. These generalizations would
facilitate the investigation of more complicated media, such
as epsilon-near-zero metamaterials, see, e.g., [66–69].
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